You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.1 KiB
149 lines
5.1 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
* location.cpp |
|
* Copyright (C) Andrew Tridgell 2011 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* this module deals with calculations involving struct Location |
|
*/ |
|
|
|
#include <FastSerial.h> |
|
#include "AP_Math.h" |
|
|
|
// radius of earth in meters |
|
#define RADIUS_OF_EARTH 6378100 |
|
|
|
static float longitude_scale(const struct Location *loc) |
|
{ |
|
static int32_t last_lat; |
|
static float scale = 1.0; |
|
if (labs(last_lat - loc->lat) < 100000) { |
|
// we are within 0.01 degrees (about 1km) of the |
|
// same latitude. We can avoid the cos() and return |
|
// the same scale factor. |
|
return scale; |
|
} |
|
scale = cos((fabs((float)loc->lat)/1.0e7) * 0.0174532925); |
|
last_lat = loc->lat; |
|
return scale; |
|
} |
|
|
|
|
|
|
|
// return distance in meters to between two locations, or -1 |
|
// if one of the locations is invalid |
|
float get_distance(const struct Location *loc1, const struct Location *loc2) |
|
{ |
|
if (loc1->lat == 0 || loc1->lng == 0) |
|
return -1; |
|
if(loc2->lat == 0 || loc2->lng == 0) |
|
return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * longitude_scale(loc2); |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
|
|
// return distance in centimeters to between two locations, or -1 if |
|
// one of the locations is invalid |
|
int32_t get_distance_cm(const struct Location *loc1, const struct Location *loc2) |
|
{ |
|
return get_distance(loc1, loc2) * 100; |
|
} |
|
|
|
// return bearing in centi-degrees between two locations |
|
int32_t get_bearing_cd(const struct Location *loc1, const struct Location *loc2) |
|
{ |
|
int32_t off_x = loc2->lng - loc1->lng; |
|
int32_t off_y = (loc2->lat - loc1->lat) / longitude_scale(loc2); |
|
int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
} |
|
|
|
// see if location is past a line perpendicular to |
|
// the line between point1 and point2. If point1 is |
|
// our previous waypoint and point2 is our target waypoint |
|
// then this function returns true if we have flown past |
|
// the target waypoint |
|
bool location_passed_point(struct Location &location, |
|
struct Location &point1, |
|
struct Location &point2) |
|
{ |
|
// the 3 points form a triangle. If the angle between lines |
|
// point1->point2 and location->point2 is greater than 90 |
|
// degrees then we have passed the waypoint |
|
Vector2f loc1(location.lat, location.lng); |
|
Vector2f pt1(point1.lat, point1.lng); |
|
Vector2f pt2(point2.lat, point2.lng); |
|
float angle = (loc1 - pt2).angle(pt1 - pt2); |
|
if (isinf(angle)) { |
|
// two of the points are co-located. |
|
// If location is equal to point2 then say we have passed the |
|
// waypoint, otherwise say we haven't |
|
if (get_distance(&location, &point2) == 0) { |
|
return true; |
|
} |
|
return false; |
|
} else if (angle == 0) { |
|
// if we are exactly on the line between point1 and |
|
// point2 then we are past the waypoint if the |
|
// distance from location to point1 is greater then |
|
// the distance from point2 to point1 |
|
return get_distance(&location, &point1) > |
|
get_distance(&point2, &point1); |
|
|
|
} |
|
if (degrees(angle) > 90) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
* extrapolate latitude/longitude given bearing and distance |
|
* thanks to http://www.movable-type.co.uk/scripts/latlong.html |
|
* |
|
* This function is precise, but costs about 1.7 milliseconds on an AVR2560 |
|
*/ |
|
void location_update(struct Location *loc, float bearing, float distance) |
|
{ |
|
float lat1 = radians(loc->lat*1.0e-7); |
|
float lon1 = radians(loc->lng*1.0e-7); |
|
float brng = radians(bearing); |
|
float dr = distance/RADIUS_OF_EARTH; |
|
|
|
float lat2 = asin(sin(lat1)*cos(dr) + |
|
cos(lat1)*sin(dr)*cos(brng)); |
|
float lon2 = lon1 + atan2(sin(brng)*sin(dr)*cos(lat1), |
|
cos(dr)-sin(lat1)*sin(lat2)); |
|
loc->lat = degrees(lat2)*1.0e7; |
|
loc->lng = degrees(lon2)*1.0e7; |
|
} |
|
|
|
/* |
|
* extrapolate latitude/longitude given distances north and east |
|
* This function costs about 80 usec on an AVR2560 |
|
*/ |
|
void location_offset(struct Location *loc, float ofs_north, float ofs_east) |
|
{ |
|
if (ofs_north != 0 || ofs_east != 0) { |
|
float dlat = ofs_north * 89.831520982; |
|
float dlng = (ofs_east * 89.831520982) / longitude_scale(loc); |
|
loc->lat += dlat; |
|
loc->lng += dlng; |
|
} |
|
}
|
|
|