You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
744 lines
20 KiB
744 lines
20 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Commands:\n" |
|
" logs\n" |
|
" setup\n" |
|
" test\n" |
|
" reboot\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"reboot", reboot_board}, |
|
{"help", main_menu_help}, |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
reboot_apm(); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(FastSerial *port) |
|
{ |
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
#if USB_MUX_PIN > 0 |
|
// on the APM2 board we have a mux thet switches UART0 between |
|
// USB and the board header. If the right ArduPPM firmware is |
|
// installed we can detect if USB is connected using the |
|
// USB_MUX_PIN |
|
pinMode(USB_MUX_PIN, INPUT); |
|
|
|
ap_system.usb_connected = !digitalReadFast(USB_MUX_PIN); |
|
if (!ap_system.usb_connected) { |
|
// USB is not connected, this means UART0 may be a Xbee, with |
|
// its darned bricking problem. We can't write to it for at |
|
// least one second after powering up. Simplest solution for |
|
// now is to delay for 1 second. Something more elegant may be |
|
// added later |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the MAVLink protocol efficiently |
|
// |
|
cliSerial->begin(SERIAL0_BAUD, 128, 256); |
|
|
|
// GPS serial port. |
|
// |
|
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU |
|
// standard gps running. Note that we need a 256 byte buffer for some |
|
// GPS types (eg. UBLOX) |
|
Serial1.begin(38400, 256, 16); |
|
#endif |
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE |
|
"\n\nFree RAM: %u\n"), |
|
memcheck_available_memory()); |
|
|
|
// |
|
// Initialize Wire and SPI libraries |
|
// |
|
#ifndef DESKTOP_BUILD |
|
I2c.begin(); |
|
I2c.timeOut(5); |
|
// initially set a fast I2c speed, and drop it on first failures |
|
I2c.setSpeed(true); |
|
#endif |
|
SPI.begin(); |
|
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate |
|
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
SPI3.begin(); |
|
SPI3.setSpeed(SPI3_SPEED_2MHZ); |
|
#endif |
|
|
|
// |
|
// Initialize the isr_registry. |
|
// |
|
isr_registry.init(); |
|
|
|
// |
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function) |
|
// |
|
report_version(); |
|
|
|
// setup IO pins |
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(A_LED_PIN, LED_OFF); |
|
|
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(B_LED_PIN, LED_OFF); |
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
|
|
#if SLIDE_SWITCH_PIN > 0 |
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode |
|
#endif |
|
#if CONFIG_PUSHBUTTON == ENABLED |
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused |
|
#endif |
|
#if CONFIG_RELAY == ENABLED |
|
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay |
|
#endif |
|
|
|
#if COPTER_LEDS == ENABLED |
|
pinMode(COPTER_LED_1, OUTPUT); //Motor LED |
|
pinMode(COPTER_LED_2, OUTPUT); //Motor LED |
|
pinMode(COPTER_LED_3, OUTPUT); //Motor LED |
|
pinMode(COPTER_LED_4, OUTPUT); //Motor LED |
|
pinMode(COPTER_LED_5, OUTPUT); //Motor or Aux LED |
|
pinMode(COPTER_LED_6, OUTPUT); //Motor or Aux LED |
|
pinMode(COPTER_LED_7, OUTPUT); //Motor or GPS LED |
|
pinMode(COPTER_LED_8, OUTPUT); //Motor or GPS LED |
|
|
|
if ( !bitRead(g.copter_leds_mode, 3) ) { |
|
piezo_beep(); |
|
} |
|
|
|
#endif |
|
|
|
|
|
// load parameters from EEPROM |
|
load_parameters(); |
|
|
|
// init the GCS |
|
gcs0.init(&Serial); |
|
|
|
#if USB_MUX_PIN > 0 |
|
if (!ap_system.usb_connected) { |
|
// we are not connected via USB, re-init UART0 with right |
|
// baud rate |
|
cliSerial->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); |
|
} |
|
#else |
|
// we have a 2nd serial port for telemetry |
|
Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 256); |
|
gcs3.init(&Serial3); |
|
#endif |
|
|
|
// identify ourselves correctly with the ground station |
|
mavlink_system.sysid = g.sysid_this_mav; |
|
mavlink_system.type = 2; //MAV_QUADROTOR; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
} |
|
if (g.log_bitmask != 0) { |
|
DataFlash.start_new_log(); |
|
} |
|
#endif |
|
|
|
/* |
|
#ifdef RADIO_OVERRIDE_DEFAULTS |
|
{ |
|
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS; |
|
APM_RC.setHIL(rc_override); |
|
} |
|
#endif |
|
*/ |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
motors.servo_manual = false; |
|
motors.init_swash(); // heli initialisation |
|
#endif |
|
|
|
RC_Channel::set_apm_rc(&APM_RC); |
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
timer_scheduler.init( &isr_registry ); |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
timer_scheduler.set_failsafe(failsafe_check); |
|
|
|
// initialise the analog port reader |
|
AP_AnalogSource_Arduino::init_timer(&timer_scheduler); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
#if CONFIG_ADC == ENABLED |
|
// begin filtering the ADC Gyros |
|
adc.Init(&timer_scheduler); // APM ADC library initialization |
|
#endif // CONFIG_ADC |
|
|
|
barometer.init(&timer_scheduler); |
|
|
|
#endif // HIL_MODE |
|
|
|
// Do GPS init |
|
g_gps = &g_gps_driver; |
|
// GPS Initialization |
|
g_gps->init(GPS::GPS_ENGINE_AIRBORNE_1G); |
|
|
|
if(g.compass_enabled) |
|
init_compass(); |
|
|
|
// init the optical flow sensor |
|
if(g.optflow_enabled) { |
|
init_optflow(); |
|
} |
|
|
|
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED |
|
// initialise inertial nav |
|
inertial_nav.init(); |
|
#endif |
|
|
|
// agmatthews USERHOOKS |
|
#ifdef USERHOOK_INIT |
|
USERHOOK_INIT |
|
#endif |
|
|
|
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED |
|
// If the switch is in 'menu' mode, run the main menu. |
|
// |
|
// Since we can't be sure that the setup or test mode won't leave |
|
// the system in an odd state, we don't let the user exit the top |
|
// menu; they must reset in order to fly. |
|
// |
|
if (check_startup_for_CLI()) { |
|
digitalWrite(A_LED_PIN, LED_ON); // turn on setup-mode LED |
|
cliSerial->printf_P(PSTR("\nCLI:\n\n")); |
|
run_cli(cliSerial); |
|
} |
|
#else |
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); |
|
cliSerial->println_P(msg); |
|
#if USB_MUX_PIN == 0 |
|
Serial3.println_P(msg); |
|
#endif |
|
#endif // CLI_ENABLED |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(); |
|
#endif |
|
|
|
// initialise sonar |
|
#if CONFIG_SONAR == ENABLED |
|
init_sonar(); |
|
#endif |
|
|
|
#if FRAME_CONIG == HELI_FRAME |
|
// initialise controller filters |
|
init_rate_controllers(); |
|
#endif // HELI_FRAME |
|
|
|
// initialize commands |
|
// ------------------- |
|
init_commands(); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
|
|
|
|
startup_ground(); |
|
|
|
// now that initialisation of IMU has occurred increase SPI to 2MHz |
|
SPI.setClockDivider(SPI_CLOCK_DIV8); // 2MHZ SPI rate |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
Log_Write_Startup(); |
|
#endif |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#ifdef AP_LIMITS |
|
|
|
// AP_Limits modules are stored as a _linked list_. That allows us to define an infinite number of modules |
|
// and also to allocate no space until we actually need to. |
|
|
|
// The linked list looks (logically) like this |
|
// [limits module] -> [first limit module] -> [second limit module] -> [third limit module] -> NULL |
|
|
|
|
|
// The details of the linked list are handled by the methods |
|
// modules_first, modules_current, modules_next, modules_last, modules_add |
|
// in limits |
|
|
|
limits.modules_add(&gpslock_limit); |
|
limits.modules_add(&geofence_limit); |
|
limits.modules_add(&altitude_limit); |
|
|
|
|
|
if (limits.debug()) { |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Limits Modules Loaded")); |
|
|
|
AP_Limit_Module *m = limits.modules_first(); |
|
while (m) { |
|
gcs_send_text_P(SEVERITY_LOW, get_module_name(m->get_module_id())); |
|
m = limits.modules_next(); |
|
} |
|
} |
|
|
|
#endif |
|
|
|
cliSerial->print_P(PSTR("\nReady to FLY ")); |
|
} |
|
|
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
static void startup_ground(void) |
|
{ |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START")); |
|
|
|
// Warm up and read Gyro offsets |
|
// ----------------------------- |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
mavlink_delay, flash_leds, &timer_scheduler); |
|
#if CLI_ENABLED == ENABLED |
|
report_ins(); |
|
#endif |
|
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device). |
|
ahrs.init(&timer_scheduler); |
|
|
|
// setup fast AHRS gains to get right attitude |
|
ahrs.set_fast_gains(true); |
|
|
|
#if SECONDARY_DMP_ENABLED == ENABLED |
|
ahrs2.init(&timer_scheduler); |
|
ahrs2.set_as_secondary(true); |
|
ahrs2.set_fast_gains(true); |
|
#endif |
|
|
|
// reset the leds |
|
// --------------------------- |
|
clear_leds(); |
|
|
|
// when we re-calibrate the gyros, |
|
// all previous I values are invalid |
|
reset_I_all(); |
|
} |
|
|
|
// set_mode - change flight mode and perform any necessary initialisation |
|
static void set_mode(byte mode) |
|
{ |
|
// Switch to stabilize mode if requested mode requires a GPS lock |
|
if(!ap.home_is_set) { |
|
if (mode > ALT_HOLD && mode != TOY_A && mode != TOY_M && mode != OF_LOITER && mode != LAND) { |
|
mode = STABILIZE; |
|
} |
|
} |
|
|
|
// Switch to stabilize if OF_LOITER requested but no optical flow sensor |
|
if (mode == OF_LOITER && !g.optflow_enabled ) { |
|
mode = STABILIZE; |
|
} |
|
|
|
control_mode = mode; |
|
control_mode = constrain(control_mode, 0, NUM_MODES - 1); |
|
|
|
// used to stop fly_aways |
|
// set to false if we have low throttle |
|
motors.auto_armed(g.rc_3.control_in > 0); |
|
set_auto_armed(g.rc_3.control_in > 0); |
|
|
|
// if we change modes, we must clear landed flag |
|
set_land_complete(false); |
|
|
|
// debug to Serial terminal |
|
//cliSerial->println(flight_mode_strings[control_mode]); |
|
|
|
ap.loiter_override = false; |
|
|
|
// report the GPS and Motor arming status |
|
led_mode = NORMAL_LEDS; |
|
|
|
switch(control_mode) |
|
{ |
|
case ACRO: |
|
ap.manual_throttle = true; |
|
ap.manual_attitude = true; |
|
set_yaw_mode(YAW_ACRO); |
|
set_roll_pitch_mode(ROLL_PITCH_ACRO); |
|
set_throttle_mode(THROTTLE_MANUAL); |
|
// reset acro axis targets to current attitude |
|
if(g.axis_enabled){ |
|
roll_axis = ahrs.roll_sensor; |
|
pitch_axis = ahrs.pitch_sensor; |
|
nav_yaw = ahrs.yaw_sensor; |
|
} |
|
break; |
|
|
|
case STABILIZE: |
|
ap.manual_throttle = true; |
|
ap.manual_attitude = true; |
|
set_yaw_mode(YAW_HOLD); |
|
set_roll_pitch_mode(ROLL_PITCH_STABLE); |
|
set_throttle_mode(STABILIZE_THROTTLE); |
|
break; |
|
|
|
case ALT_HOLD: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = true; |
|
set_yaw_mode(ALT_HOLD_YAW); |
|
set_roll_pitch_mode(ALT_HOLD_RP); |
|
set_throttle_mode(ALT_HOLD_THR); |
|
break; |
|
|
|
case AUTO: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
set_yaw_mode(AUTO_YAW); |
|
set_roll_pitch_mode(AUTO_RP); |
|
set_throttle_mode(AUTO_THR); |
|
|
|
// loads the commands from where we left off |
|
init_commands(); |
|
break; |
|
|
|
case CIRCLE: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
|
|
// start circling around current location |
|
set_next_WP(¤t_loc); |
|
circle_WP = next_WP; |
|
|
|
// set yaw to point to center of circle |
|
yaw_look_at_WP = circle_WP; |
|
set_yaw_mode(YAW_LOOK_AT_LOCATION); |
|
set_roll_pitch_mode(CIRCLE_RP); |
|
set_throttle_mode(CIRCLE_THR); |
|
circle_angle = 0; |
|
break; |
|
|
|
case LOITER: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
set_yaw_mode(LOITER_YAW); |
|
set_roll_pitch_mode(LOITER_RP); |
|
set_throttle_mode(LOITER_THR); |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
case POSITION: |
|
ap.manual_throttle = true; |
|
ap.manual_attitude = false; |
|
set_yaw_mode(YAW_HOLD); |
|
set_roll_pitch_mode(ROLL_PITCH_AUTO); |
|
set_throttle_mode(THROTTLE_MANUAL); |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
case GUIDED: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
set_yaw_mode(YAW_LOOK_AT_NEXT_WP); |
|
set_roll_pitch_mode(ROLL_PITCH_AUTO); |
|
set_throttle_mode(THROTTLE_AUTO); |
|
next_WP = current_loc; |
|
set_next_WP(&guided_WP); |
|
break; |
|
|
|
case LAND: |
|
if( ap.home_is_set ) { |
|
// switch to loiter if we have gps |
|
ap.manual_attitude = false; |
|
set_yaw_mode(LOITER_YAW); |
|
set_roll_pitch_mode(LOITER_RP); |
|
}else{ |
|
// otherwise remain with stabilize roll and pitch |
|
ap.manual_attitude = true; |
|
set_yaw_mode(YAW_HOLD); |
|
set_roll_pitch_mode(ROLL_PITCH_STABLE); |
|
} |
|
ap.manual_throttle = false; |
|
do_land(); |
|
break; |
|
|
|
case RTL: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
do_RTL(); |
|
break; |
|
|
|
case OF_LOITER: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = false; |
|
set_yaw_mode(OF_LOITER_YAW); |
|
set_roll_pitch_mode(OF_LOITER_RP); |
|
set_throttle_mode(OF_LOITER_THR); |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
// THOR |
|
// These are the flight modes for Toy mode |
|
// See the defines for the enumerated values |
|
case TOY_A: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = true; |
|
set_yaw_mode(YAW_TOY); |
|
set_roll_pitch_mode(ROLL_PITCH_TOY); |
|
set_throttle_mode(THROTTLE_AUTO); |
|
wp_control = NO_NAV_MODE; |
|
|
|
// save throttle for fast exit of Alt hold |
|
saved_toy_throttle = g.rc_3.control_in; |
|
|
|
break; |
|
|
|
case TOY_M: |
|
ap.manual_throttle = false; |
|
ap.manual_attitude = true; |
|
set_yaw_mode(YAW_TOY); |
|
set_roll_pitch_mode(ROLL_PITCH_TOY); |
|
wp_control = NO_NAV_MODE; |
|
set_throttle_mode(THROTTLE_HOLD); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
if(ap.failsafe) { |
|
// this is to allow us to fly home without interactive throttle control |
|
set_throttle_mode(THROTTLE_AUTO); |
|
ap.manual_throttle = false; |
|
|
|
// does not wait for us to be in high throttle, since the |
|
// Receiver will be outputting low throttle |
|
motors.auto_armed(true); |
|
set_auto_armed(true); |
|
} |
|
|
|
if(ap.manual_attitude) { |
|
// We are under manual attitude control |
|
// remove the navigation from roll and pitch command |
|
reset_nav_params(); |
|
// remove the wind compenstaion |
|
reset_wind_I(); |
|
} |
|
|
|
Log_Write_Mode(control_mode); |
|
} |
|
|
|
static void |
|
init_simple_bearing() |
|
{ |
|
initial_simple_bearing = ahrs.yaw_sensor; |
|
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, initial_simple_bearing); |
|
} |
|
|
|
#if CLI_SLIDER_ENABLED == ENABLED && CLI_ENABLED == ENABLED |
|
static boolean |
|
check_startup_for_CLI() |
|
{ |
|
return (digitalReadFast(SLIDE_SWITCH_PIN) == 0); |
|
} |
|
#endif // CLI_ENABLED |
|
|
|
/* |
|
* map from a 8 bit EEPROM baud rate to a real baud rate |
|
*/ |
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) |
|
{ |
|
switch (rate) { |
|
case 1: return 1200; |
|
case 2: return 2400; |
|
case 4: return 4800; |
|
case 9: return 9600; |
|
case 19: return 19200; |
|
case 38: return 38400; |
|
case 57: return 57600; |
|
case 111: return 111100; |
|
case 115: return 115200; |
|
} |
|
//cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); |
|
return default_baud; |
|
} |
|
|
|
#if USB_MUX_PIN > 0 |
|
static void check_usb_mux(void) |
|
{ |
|
bool usb_check = !digitalReadFast(USB_MUX_PIN); |
|
if (usb_check == ap_system.usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
ap_system.usb_connected = usb_check; |
|
if (ap_system.usb_connected) { |
|
cliSerial->begin(SERIAL0_BAUD); |
|
} else { |
|
cliSerial->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); |
|
} |
|
} |
|
#endif |
|
|
|
/* |
|
* called by gyro/accel init to flash LEDs so user |
|
* has some mesmerising lights to watch while waiting |
|
*/ |
|
void flash_leds(bool on) |
|
{ |
|
digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON); |
|
digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF); |
|
} |
|
|
|
#ifndef DESKTOP_BUILD |
|
/* |
|
* Read Vcc vs 1.1v internal reference |
|
*/ |
|
uint16_t board_voltage(void) |
|
{ |
|
static AP_AnalogSource_Arduino vcc(ANALOG_PIN_VCC); |
|
return vcc.read_vcc(); |
|
} |
|
#endif |
|
|
|
/* |
|
force a software reset of the APM |
|
*/ |
|
static void reboot_apm(void) |
|
{ |
|
cliSerial->printf_P(PSTR("REBOOTING\n")); |
|
delay(100); // let serial flush |
|
// see http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1250663814/ |
|
// for the method |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
// this relies on the bootloader resetting the watchdog, which |
|
// APM1 doesn't do |
|
cli(); |
|
wdt_enable(WDTO_15MS); |
|
#else |
|
// this works on APM1 |
|
void (*fn)(void) = NULL; |
|
fn(); |
|
#endif |
|
while (1); |
|
} |
|
|
|
// |
|
// print_flight_mode - prints flight mode to serial port. |
|
// |
|
static void |
|
print_flight_mode(uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case STABILIZE: |
|
cliSerial->print_P(PSTR("STABILIZE")); |
|
break; |
|
case ACRO: |
|
cliSerial->print_P(PSTR("ACRO")); |
|
break; |
|
case ALT_HOLD: |
|
cliSerial->print_P(PSTR("ALT_HOLD")); |
|
break; |
|
case AUTO: |
|
cliSerial->print_P(PSTR("AUTO")); |
|
break; |
|
case GUIDED: |
|
cliSerial->print_P(PSTR("GUIDED")); |
|
break; |
|
case LOITER: |
|
cliSerial->print_P(PSTR("LOITER")); |
|
break; |
|
case RTL: |
|
cliSerial->print_P(PSTR("RTL")); |
|
break; |
|
case CIRCLE: |
|
cliSerial->print_P(PSTR("CIRCLE")); |
|
break; |
|
case POSITION: |
|
cliSerial->print_P(PSTR("POSITION")); |
|
break; |
|
case LAND: |
|
cliSerial->print_P(PSTR("LAND")); |
|
break; |
|
case OF_LOITER: |
|
cliSerial->print_P(PSTR("OF_LOITER")); |
|
break; |
|
case TOY_M: |
|
cliSerial->print_P(PSTR("TOY_M")); |
|
break; |
|
case TOY_A: |
|
cliSerial->print_P(PSTR("TOY_A")); |
|
break; |
|
default: |
|
cliSerial->print_P(PSTR("---")); |
|
break; |
|
} |
|
}
|
|
|