You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
489 lines
14 KiB
489 lines
14 KiB
/* |
|
* vector3.cpp |
|
* Copyright (C) Andrew Tridgell 2012 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#pragma GCC optimize("O2") |
|
|
|
#include "AP_Math.h" |
|
|
|
#define HALF_SQRT_2 0.70710678118654757f |
|
|
|
// rotate a vector by a standard rotation, attempting |
|
// to use the minimum number of floating point operations |
|
template <typename T> |
|
void Vector3<T>::rotate(enum Rotation rotation) |
|
{ |
|
T tmp; |
|
switch (rotation) { |
|
case ROTATION_NONE: |
|
case ROTATION_MAX: |
|
return; |
|
case ROTATION_YAW_45: { |
|
tmp = HALF_SQRT_2*(float)(x - y); |
|
y = HALF_SQRT_2*(float)(x + y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_YAW_90: { |
|
tmp = x; x = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_YAW_135: { |
|
tmp = -HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(x - y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_YAW_180: |
|
x = -x; y = -y; |
|
return; |
|
case ROTATION_YAW_225: { |
|
tmp = HALF_SQRT_2*(float)(y - x); |
|
y = -HALF_SQRT_2*(float)(x + y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_YAW_270: { |
|
tmp = x; x = y; y = -tmp; |
|
return; |
|
} |
|
case ROTATION_YAW_315: { |
|
tmp = HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(y - x); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_180: { |
|
y = -y; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_45: { |
|
tmp = HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(x - y); |
|
x = tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_90: { |
|
tmp = x; x = y; y = tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_135: { |
|
tmp = HALF_SQRT_2*(float)(y - x); |
|
y = HALF_SQRT_2*(float)(y + x); |
|
x = tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_PITCH_180: { |
|
x = -x; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_225: { |
|
tmp = -HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(y - x); |
|
x = tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_270: { |
|
tmp = x; x = -y; y = -tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_YAW_315: { |
|
tmp = HALF_SQRT_2*(float)(x - y); |
|
y = -HALF_SQRT_2*(float)(x + y); |
|
x = tmp; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_90: { |
|
tmp = z; z = y; y = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_YAW_45: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = HALF_SQRT_2*(float)(x - y); |
|
y = HALF_SQRT_2*(float)(x + y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_YAW_90: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = x; x = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_YAW_135: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = -HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(x - y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270: { |
|
tmp = z; z = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_YAW_45: { |
|
tmp = z; z = -y; y = tmp; |
|
tmp = HALF_SQRT_2*(float)(x - y); |
|
y = HALF_SQRT_2*(float)(x + y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_YAW_90: { |
|
tmp = z; z = -y; y = tmp; |
|
tmp = x; x = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_YAW_135: { |
|
tmp = z; z = -y; y = tmp; |
|
tmp = -HALF_SQRT_2*(float)(x + y); |
|
y = HALF_SQRT_2*(float)(x - y); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_PITCH_90: { |
|
tmp = z; z = -x; x = tmp; |
|
return; |
|
} |
|
case ROTATION_PITCH_270: { |
|
tmp = z; z = x; x = -tmp; |
|
return; |
|
} |
|
case ROTATION_PITCH_180_YAW_90: { |
|
z = -z; |
|
tmp = -x; x = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_PITCH_180_YAW_270: { |
|
x = -x; z = -z; |
|
tmp = x; x = y; y = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_90: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = z; z = -x; x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_PITCH_90: { |
|
y = -y; z = -z; |
|
tmp = z; z = -x; x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_PITCH_90: { |
|
tmp = z; z = -y; y = tmp; |
|
tmp = z; z = -x; x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_180: { |
|
tmp = z; z = y; y = -tmp; |
|
x = -x; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_PITCH_180: { |
|
tmp = z; z = -y; y = tmp; |
|
x = -x; z = -z; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_270: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = z; z = x; x = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_180_PITCH_270: { |
|
y = -y; z = -z; |
|
tmp = z; z = x; x = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_270_PITCH_270: { |
|
tmp = z; z = -y; y = tmp; |
|
tmp = z; z = x; x = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_180_YAW_90: { |
|
tmp = z; z = y; y = -tmp; |
|
x = -x; z = -z; |
|
tmp = x; x = -y; y = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_YAW_270: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = x; x = y; y = -tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_68_YAW_293: { |
|
float tmpx = x; |
|
float tmpy = y; |
|
float tmpz = z; |
|
x = 0.143039f * tmpx + 0.368776f * tmpy + -0.918446f * tmpz; |
|
y = -0.332133f * tmpx + -0.856289f * tmpy + -0.395546f * tmpz; |
|
z = -0.932324f * tmpx + 0.361625f * tmpy + 0.000000f * tmpz; |
|
return; |
|
} |
|
case ROTATION_PITCH_315: { |
|
tmp = HALF_SQRT_2*(float)(x - z); |
|
z = HALF_SQRT_2*(float)(x + z); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_ROLL_90_PITCH_315: { |
|
tmp = z; z = y; y = -tmp; |
|
tmp = HALF_SQRT_2*(float)(x - z); |
|
z = HALF_SQRT_2*(float)(x + z); |
|
x = tmp; |
|
return; |
|
} |
|
case ROTATION_PITCH_7: { |
|
const float sin_pitch = 0.12186934340514748f; // sinf(pitch); |
|
const float cos_pitch = 0.992546151641322f; // cosf(pitch); |
|
float tmpx = x; |
|
float tmpz = z; |
|
x = cos_pitch * tmpx + sin_pitch * tmpz; |
|
z = -sin_pitch * tmpx + cos_pitch * tmpz; |
|
return; |
|
} |
|
case ROTATION_CUSTOM: // no-op; caller should perform custom rotations via matrix multiplication |
|
return; |
|
} |
|
} |
|
|
|
template <typename T> |
|
void Vector3<T>::rotate_inverse(enum Rotation rotation) |
|
{ |
|
Vector3<T> x_vec(1.0f,0.0f,0.0f); |
|
Vector3<T> y_vec(0.0f,1.0f,0.0f); |
|
Vector3<T> z_vec(0.0f,0.0f,1.0f); |
|
|
|
x_vec.rotate(rotation); |
|
y_vec.rotate(rotation); |
|
z_vec.rotate(rotation); |
|
|
|
Matrix3<T> M( |
|
x_vec.x, y_vec.x, z_vec.x, |
|
x_vec.y, y_vec.y, z_vec.y, |
|
x_vec.z, y_vec.z, z_vec.z |
|
); |
|
|
|
(*this) = M.mul_transpose(*this); |
|
} |
|
|
|
// vector cross product |
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator %(const Vector3<T> &v) const |
|
{ |
|
Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x); |
|
return temp; |
|
} |
|
|
|
// dot product |
|
template <typename T> |
|
T Vector3<T>::operator *(const Vector3<T> &v) const |
|
{ |
|
return x*v.x + y*v.y + z*v.z; |
|
} |
|
|
|
template <typename T> |
|
float Vector3<T>::length(void) const |
|
{ |
|
return norm(x, y, z); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> &Vector3<T>::operator *=(const T num) |
|
{ |
|
x*=num; y*=num; z*=num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> &Vector3<T>::operator /=(const T num) |
|
{ |
|
x /= num; y /= num; z /= num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> &Vector3<T>::operator -=(const Vector3<T> &v) |
|
{ |
|
x -= v.x; y -= v.y; z -= v.z; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
bool Vector3<T>::is_nan(void) const |
|
{ |
|
return isnan(x) || isnan(y) || isnan(z); |
|
} |
|
|
|
template <typename T> |
|
bool Vector3<T>::is_inf(void) const |
|
{ |
|
return isinf(x) || isinf(y) || isinf(z); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> &Vector3<T>::operator +=(const Vector3<T> &v) |
|
{ |
|
x+=v.x; y+=v.y; z+=v.z; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator /(const T num) const |
|
{ |
|
return Vector3<T>(x/num, y/num, z/num); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator *(const T num) const |
|
{ |
|
return Vector3<T>(x*num, y*num, z*num); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator -(const Vector3<T> &v) const |
|
{ |
|
return Vector3<T>(x-v.x, y-v.y, z-v.z); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator +(const Vector3<T> &v) const |
|
{ |
|
return Vector3<T>(x+v.x, y+v.y, z+v.z); |
|
} |
|
|
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator -(void) const |
|
{ |
|
return Vector3<T>(-x,-y,-z); |
|
} |
|
|
|
template <typename T> |
|
bool Vector3<T>::operator ==(const Vector3<T> &v) const |
|
{ |
|
return (is_equal(x,v.x) && is_equal(y,v.y) && is_equal(z,v.z)); |
|
} |
|
|
|
template <typename T> |
|
bool Vector3<T>::operator !=(const Vector3<T> &v) const |
|
{ |
|
return (!is_equal(x,v.x) || !is_equal(y,v.y) || !is_equal(z,v.z)); |
|
} |
|
|
|
template <typename T> |
|
float Vector3<T>::angle(const Vector3<T> &v2) const |
|
{ |
|
const float len = this->length() * v2.length(); |
|
if (len <= 0) { |
|
return 0.0f; |
|
} |
|
const float cosv = ((*this)*v2) / len; |
|
if (fabsf(cosv) >= 1) { |
|
return 0.0f; |
|
} |
|
return acosf(cosv); |
|
} |
|
|
|
// multiplication of transpose by a vector |
|
template <typename T> |
|
Vector3<T> Vector3<T>::operator *(const Matrix3<T> &m) const |
|
{ |
|
return Vector3<T>(*this * m.colx(), |
|
*this * m.coly(), |
|
*this * m.colz()); |
|
} |
|
|
|
// multiply a column vector by a row vector, returning a 3x3 matrix |
|
template <typename T> |
|
Matrix3<T> Vector3<T>::mul_rowcol(const Vector3<T> &v2) const |
|
{ |
|
const Vector3<T> v1 = *this; |
|
return Matrix3<T>(v1.x * v2.x, v1.x * v2.y, v1.x * v2.z, |
|
v1.y * v2.x, v1.y * v2.y, v1.y * v2.z, |
|
v1.z * v2.x, v1.z * v2.y, v1.z * v2.z); |
|
} |
|
|
|
// distance from the tip of this vector to a line segment specified by two vectors |
|
template <typename T> |
|
float Vector3<T>::distance_to_segment(const Vector3<T> &seg_start, const Vector3<T> &seg_end) const |
|
{ |
|
// triangle side lengths |
|
const float a = (*this-seg_start).length(); |
|
const float b = (seg_start-seg_end).length(); |
|
const float c = (seg_end-*this).length(); |
|
|
|
// protect against divide by zero later |
|
if (::is_zero(b)) { |
|
return 0.0f; |
|
} |
|
|
|
// semiperimeter of triangle |
|
const float s = (a+b+c) * 0.5f; |
|
|
|
float area_squared = s*(s-a)*(s-b)*(s-c); |
|
// area must be constrained above 0 because a triangle could have 3 points could be on a line and float rounding could push this under 0 |
|
if (area_squared < 0.0f) { |
|
area_squared = 0.0f; |
|
} |
|
const float area = safe_sqrt(area_squared); |
|
return 2.0f*area/b; |
|
} |
|
|
|
// define for float |
|
template void Vector3<float>::rotate(enum Rotation); |
|
template void Vector3<float>::rotate_inverse(enum Rotation); |
|
template float Vector3<float>::length(void) const; |
|
template Vector3<float> Vector3<float>::operator %(const Vector3<float> &v) const; |
|
template float Vector3<float>::operator *(const Vector3<float> &v) const; |
|
template Vector3<float> Vector3<float>::operator *(const Matrix3<float> &m) const; |
|
template Matrix3<float> Vector3<float>::mul_rowcol(const Vector3<float> &v) const; |
|
template Vector3<float> &Vector3<float>::operator *=(const float num); |
|
template Vector3<float> &Vector3<float>::operator /=(const float num); |
|
template Vector3<float> &Vector3<float>::operator -=(const Vector3<float> &v); |
|
template Vector3<float> &Vector3<float>::operator +=(const Vector3<float> &v); |
|
template Vector3<float> Vector3<float>::operator /(const float num) const; |
|
template Vector3<float> Vector3<float>::operator *(const float num) const; |
|
template Vector3<float> Vector3<float>::operator +(const Vector3<float> &v) const; |
|
template Vector3<float> Vector3<float>::operator -(const Vector3<float> &v) const; |
|
template Vector3<float> Vector3<float>::operator -(void) const; |
|
template bool Vector3<float>::operator ==(const Vector3<float> &v) const; |
|
template bool Vector3<float>::operator !=(const Vector3<float> &v) const; |
|
template bool Vector3<float>::is_nan(void) const; |
|
template bool Vector3<float>::is_inf(void) const; |
|
template float Vector3<float>::angle(const Vector3<float> &v) const; |
|
template float Vector3<float>::distance_to_segment(const Vector3<float> &seg_start, const Vector3<float> &seg_end) const; |
|
|
|
// define needed ops for Vector3l |
|
template Vector3<int32_t> &Vector3<int32_t>::operator +=(const Vector3<int32_t> &v); |
|
|
|
template void Vector3<double>::rotate(enum Rotation); |
|
template void Vector3<double>::rotate_inverse(enum Rotation); |
|
template float Vector3<double>::length(void) const; |
|
template Vector3<double> Vector3<double>::operator %(const Vector3<double> &v) const; |
|
template double Vector3<double>::operator *(const Vector3<double> &v) const; |
|
template Vector3<double> Vector3<double>::operator *(const Matrix3<double> &m) const; |
|
template Matrix3<double> Vector3<double>::mul_rowcol(const Vector3<double> &v) const; |
|
template Vector3<double> &Vector3<double>::operator *=(const double num); |
|
template Vector3<double> &Vector3<double>::operator /=(const double num); |
|
template Vector3<double> &Vector3<double>::operator -=(const Vector3<double> &v); |
|
template Vector3<double> &Vector3<double>::operator +=(const Vector3<double> &v); |
|
template Vector3<double> Vector3<double>::operator /(const double num) const; |
|
template Vector3<double> Vector3<double>::operator *(const double num) const; |
|
template Vector3<double> Vector3<double>::operator +(const Vector3<double> &v) const; |
|
template Vector3<double> Vector3<double>::operator -(const Vector3<double> &v) const; |
|
template Vector3<double> Vector3<double>::operator -(void) const; |
|
template bool Vector3<double>::operator ==(const Vector3<double> &v) const; |
|
template bool Vector3<double>::operator !=(const Vector3<double> &v) const; |
|
template bool Vector3<double>::is_nan(void) const; |
|
template bool Vector3<double>::is_inf(void) const;
|
|
|